DE ONTWIKKELING VAN (VOEDSEL)NATUUR

Natuurontwikkeling in het Geleenbeekdal

Carmen Hazeu & Brechtje Pieterse
De ontwikkeling van (voedsel)natuur
Natuurontwikkeling in het Geleenbeekdal

Hazeu, Carmen
Pieterse, Brechtje

Contact
Carmen.hazeu@hvhl.nl
Brechtje.pieterse@hvhl.nl

Opleiding: Land- en Watermanagement
Hogeschool Van Hall Larenstein
27-06-2019

In opdracht van Waterschap Limburg

Onder begeleiding van Hogeschool Van Hall Larenstein
Voorwoord

Voor u ligt de rapportage “De ontwikkeling van (voedsel)natuur”, een onderzoek naar mogelijke natuurontwikkeling in het Geleenbeekdal. Deze rapportage is opgesteld in opdracht van het Waterschap Limburg. Dit onderzoek is uitgevoerd in het kader van het ontwikkelen van natuur binnen het Geleenbeekdal.

Wij willen de familie Knops graag bedanken voor het informeren over voedselbossen. Daarnaast willen we het Waterschap Limburg bedanken voor de rondleiding in het gebied en de extra inzichten die hiermee verkregen zijn. Tenslotte willen we Hans van den Dool en Sara Eeman bedanken voor de technische achtergrond informatie en de begeleiding.

Wij wensen u veel leesplezier toe.

Carmen Hazeu
Brechtje Pieterse
Velp, donderdag 27 juni 2019
Samenvatting

Waar langs het Geleenbeekdal kan natuurontwikkeling en de aanleg van voedselbossen een positieve invloed hebben op de waterhuishouding?

Om deze onderzoeksvraag te kunnen beantwoorden is de huidige situatie van de beek geanalyseerd middels een literatuurstudie en de Waterwijzer Landbouw en Waterwijzer Natuur. Uit deze gebiedsanalyse zijn verschillende kansen en knelpunten naar voren gekomen met betrekking tot natuurontwikkeling. Verschillende locaties kampen met droogte- of zuurstofstress waardoor deze percelen de gestelde doelstellingen niet halen. Op het gebied van water blijkt dat zowel de oppervlaktewaterkwaliteit als de grondwaterkwaliteit matig van kwaliteit is. Deze matige kwaliteit wordt veroorzaakt door de omliggende landbouwgebieden, de rioolwaterzuiveringsinstallatie en door de mijnbouw van vroeger. Gebaseerd op deze knelpunten zijn drie verschillende maatregelen naar voren gekomen en uitgewerkt.

Tenslotte wordt als derde maatregel het aanleggen van natte natuur aangedragen. Deze natuur wordt ontwikkeld op een landbouwperceel dat momenteel zuurstofstress ondervindt. Dit is een perceel dat van nature al nat is, hierdoor is dit perceel niet geschikt voor het huidige landgebruik. Vanwege dat dit perceel al nat is, is het aanleggen van natte natuur een grote kans. Hierdoor is er nauwelijks kans voor eutrofiëring en kan het natuurdoeltype H91E0 Vochtige alluviale bossen hier goed groeien. Dit natuurdoeltype is kenmerkend voor het gebied en zal de huidige natuur van het gebied worden versterkt. Samengenomen zorgen deze drie maatregelen voor het uitbreiden van de ecologische hoofdstructuur, de biodiversiteit en bevorderen natuurontwikkeling in het Geleenbeekdal.

Het uitvoeren van de voorgestelde maatregelen heeft invloed op het gebied en om te voorkomen dat schade in het gebied wordt aangericht moet rekening worden gehouden met de wet- en regelgeving die van toepassing is.
Inhoud

1. Inleiding .. 1
 1.1. Aanleiding .. 1
 1.2. Probleemstelling .. 1
 1.3. Hoofd- en Deelvragen .. 1
 1.4. Doelstelling ... 2
 1.5. Methode ... 2
 1.6. Doelgroep ... 2
 1.7. Leeswijzer .. 2
2. Gebiedsanalyse .. 3
 2.1. Ligging projectgebied .. 3
 2.2. Watersysteem .. 4
 2.3. Natuur en bodem .. 7
 2.4. Uitgevoerde maatregelen ... 9
 2.5. Waterwijzer .. 10
 2.5.1. Natuur ... 10
 2.5.2. Landbouw ... 13
3. Knelpunten en problemen .. 16
4. Maatregelen en consequenties ... 18
 4.1. Voedselbos ... 19
 4.1.1. Wat is een voedselbos .. 19
 4.1.2. Voordelen voedselbos ... 20
 4.1.3. Voedselbos vs. landbouw ... 21
 4.2. Droge Natuur .. 23
 4.3. Natte Natuur .. 25
 4.4. Consequenties .. 27
5. Wetten en regelgeving .. 28
 5.1. Wet Natuurbescherming (Wnb) ... 28
 5.2. Kaderrichtlijn Water (KRW) .. 29
 5.3. Wet algemene bepalingen omgevingsrecht (Wabo) .. 30
 5.4. Wet bodembescherming .. 30
 5.5. Ontgrondingenwet .. 30
 5.6. Waterwet ... 31
5.7. Wet ammoniak en veehouderij (Wav) .. 31
5.8. Omgevingsverordening Provincie Limburg ... 31
5.9. Waterschap Limburg .. 31
5.10. Wet ruimtelijke ordening (Wro) .. 31
5.11. Subsidieregeling ... 32

6. Conclusie en aanbevelingen .. 33
6.1. Conclusie ... 33
6.2. Aanbevelingen .. 34

Bibliografie ... I

Bijlagen ... V
I. Reflectie op het onderzoek ... V
II. Reflectie op samenwerking.. VI
1. Inleiding

1.1. Aanleiding
Watersystemen zijn toe aan aanpassingen, gezien de toekomstige klimaatveranderingen moet er rekening gehouden worden met hevige neerslag en langere perioden van droogte. De huidige trend is het terugbrengen van wateren naar hun natuurlijk staat. Onderdeel hiervan is beken en rivier de ruimte te geven om natuurlijk te stromen. Dit is ook het geval voor de Geleenbeek in Zuid-Limburg. Deze beek is vroeger gekanaliseerd en vastgelegd. Sinds 1990 zijn projecten gestart voor het herstel van de beek. Waterschap Limburg heeft studenten van Van Hall Larenstein gevraagd om een deel van het traject van de Geleenbeek te onderzoeken en natuurontwikkelingsmaatregelen aan te dragen. Onderdeel van deze vraag is een onderzoek naar de ontwikkeling van een voedselbos. Wellicht hebben voedselbossen de capaciteit om in te gaan op waterbergingsproblematiek. Het Waterschap Limburg is partner van het projectplan Voedselbossen Zuidoost Nederland en wil meer kennis op doen over de mogelijkheden van voedselbossen in Zuid-Limburg. Het doel van het project is om maatregelen aan te dragen die het projectgebied verder ontwikkeling betreft natuur, water en landbouw.

1.2. Probleemstelling

1.3. Hoofd- en Deelvragen
Om het probleem in het Geleenbeekdal op te lossen is de volgende hoofdvraag opgesteld:
Waar langs het Geleenbeekdal kan natuurontwikkeling en de aanleg van voedselbossen een positieve invloed hebben op de waterhuishouding?

Het antwoord op de hoofdvraag is opgebouwd uit verschillende onderwerpen, deze zijn opgedeeld in de volgende deelvragen:
1. Hoe ziet de huidige situatie van de Geelenbeekdal eruit op het gebied van; ligging, watersysteem, natuur, bodem en landbouw?
2. Welke maatregelen zijn in het verleden uitgevoerd binnen het projectgebied met betrekking op natuurontwikkeling en waterhuishouding?
3. Welke knelpunten en problemen zijn naar voren gekomen aan de hand van de gebiedsanalyse?
4. Welke maatregelen kunnen worden genomen om de natuurontwikkeling binnen het projectgebied te bevorderen?
5. Welke wet en regelgeving zijn van toepassing op het uitvoeren van maatregelen in het Geleenbeekdal?
1.4. Doelstelling
Het doel van dit onderzoek om de Geleenbeek te analyseren op het gebied van waterhuishouding in relatie tot de natuurstoerontwikkeling. Het eindproduct van het onderzoek is een onderzoeksrapport waarin verschillende maatregelen worden aangedragen om het Geleenbeekdal robuuster te maken.

1.5. Methode
Voor het analyseren van het projectgebied wordt een literatuurstudie uitgevoerd en is een veldbezoek georganiseerd. Tijdens dit veldbezoek wordt door verschillende experts informatie over het gebied en voedselbossen gegeven. Vervolgens wordt aan de hand van de literatuurstudie een analyse uitgevoerd met de waterwijzer natuur en landbouw. Deze analyse geeft de verschillende knelpunten op het gebied van landbouw en natuur weer. Voor deze knelpunten worden verschillende maatregelen aangedragen die onderbouwt worden aan de hand van literatuurstudie. Tenslotte wordt voor de maatregelen gekeken welke wetten van toepassing zijn door middel van een literatuurstudie.

1.6. Doelgroep
Dit rapport is opgesteld voor het Waterschap Limburg met het doel te informeren en adviseren over mogelijkheden omtrent de Geleenbeek. Daarnaast is het rapport opgesteld voor andere belanghebbende in het projectgebied.

1.7. Leeswijzer
Dit onderzoek is opgedeeld in zes hoofdstukken, waarvan hoofdstuk één de inleiding is. In hoofdstuk twee wordt het gebied op verschillende punten geanalyseerd. Vervolgens wordt in hoofdstuk drie aan de hand van de analyse de verschillende knelpunten uitgewerkt. Hoofdstuk vier gaat in op verschillende maatregelen die toegepast kunnen worden in het gebied. Voor de verschillende maatregelen gelden verschillende wetten, dit wordt uitgelegd in hoofdstuk vijf. Tenslotte wordt in hoofdstuk zes een conclusie getrokken over de hoofdvraag die gesteld is in het eerste hoofdstuk.
2. Gebiedsanalyse

In dit hoofdstuk wordt het projectgebied geanalyseerd. De ligging, het watersysteem, de natuur en bodem, de uitgevoerde maatregelen en de natuur- en landbouwanalyse van het projectgebied is uitgewerkt.

2.1. Ligging projectgebied

Aan de oostzijde van de Provincie Limburg stroomt de Geleenbeek, dit is een zijtak van de rivier de Maas. De beek ontspringt te oosten van Heerlen en stroomt in noordwestelijke richting naar Geleen. De Geleenbeek voert het water van verscheidene zijtakken af en is daarom een belangrijke verbindende schakel in de waterhuishouding van Limburg (Provincie Limburg, 2009). In dit onderzoek wordt een gedeelte van het Geleenbeekdal onderzocht, dit gedeelte is zwart omlijnd in Figuur 1.

![Figuur 1 Ligging Geleenbeek (Waterschap Limburg, 2013)]
2.2. Watersysteem

Het oppervlaktewatersysteem
Het oppervlaktewatersysteem van het Geleenbeekdal bestaat voornamelijk uit beken en plassen, deze zijn voornamelijk te vinden in de dalen. Op de hogere delen van het gebied, de plateaus, bevinden zich nauwelijks tot geen waterlopen. Op de plateaus bevinden zich wel droogdalen die ten tijde van regen gebruikt worden voor het afvoeren van regenwater naar permanent watervoerende beken. De Geleenbeek wordt van verschillende kanten gevoed met water, namelijk door bronnen, grondwater en afstromende neerslag. Evenzeer wordt de beek gevoed door het effluent van twee rioolwaterzuiveringsinstallaties (rwzi’s), en verscheidene riool overstorten en zoals hierboven beschreven komen verschillende zijbeken uit in de Geleenbeek (Provincie Limburg, 2009). De beek is een van de grotere beken in het gebied en speelt een belangrijke rol voor het afvoeren van water. Gemiddeld (gemeten ter hoogte van Brommelen) heeft de Geleenbeek een afvoer van 0,2 m³/s, waarvan het minimum debiet 0,7 m³/s is en het maximum debiet 14,56 m³/s. Bij hevige regenval storten de riolen over in de Geleenbeek, dit zorgt voor extra af te voeren water, wat leidt tot piekafvoeren (Rijksinstituut voor Volksgezondheid en Milieu, 2004).

Oppervlaktewaterkwaliteit
De waterkwaliteit van het oppervlaktewater is matig tot slecht. Dit wordt veroorzaakt door verschillende antropogene activiteit in het gebied. De grootste verslechtering in kwaliteit komen door de rwzi’s en de riooloverstorten. De riooloverstorten zorgen voor korte piekbelastingen met schadelijke stoffen. De rwzi’s beïnvloeden zowel de fysisch-chemische en de chemische waterkwaliteit, ook tast het effluent het natuurlijke hydrologisch regime aan. Een andere invloed op de waterkwaliteit is de landbouw. Het gebied rondom het projectgebied is naast stedelijk gebied grotendeels landbouw. Landbouwactiviteiten zorgen onder andere voor dat stikstof, fosfor, gewasbeschermingsmiddelen, zware metalen etc. in de beek terecht komt. Over de jaren heen is de beek verschillende keren heringericht voor de functie wat het op dat moment moest dienen. Door deze veranderingen in de beek zijn de natuurlijke habitats, processen en hydrologisch regime aangetast.

In de figuur hieronder (Figuur 2) is de huidige toestand en de doelen voor de toekomst van de Geleenbeek weergeven. Zichtbaar is dat de EKR van de beek momenteel in de categorie matig valt en dat de verwachting is dat de toestand pas in 2027 zal voldoen aan de Kader Richtlijn Water (KRW). Het tweede gedeelte van de figuur weergeeft de toestand van de fysische chemie. In deze categorie voldoen sinds 2016 het zoutgehalte, de temperatuur, de zuurgraad en de zuurstofverzadiging aan de eisen van de KRW. Dit geldt niet voor de fosfor en stikstof. De hoeveelheid fosfor in de beek overschrijdt al sinds 2009 de KRW-normen, de hierop volgende jaren is op dit gebied geen vooruitgang geboekt en blijft de fosfor hoeveelheid in de beek slecht. De prognose is dan ook dat het ten minste tot 2027 gaat duren voordat de fosfor qua kwantiteit gaat voldoen aan de KRW-normen. Ook voor stikstof geldt dat de gemeten waarden op dit moment de KRW-normen overschrijden. De hoeveelheid stikstof valt sinds 2015 onder ontoereikend, de prognose is dat dit in de komende jaren verbeterd zal worden tot matig en helemaal aan de normen zal voldoen in 2027 (Waterschap Limburg, 2018).
Biologie

<table>
<thead>
<tr>
<th>Biologie</th>
<th>GEP</th>
<th>Toestand 2009</th>
<th>Toestand 2015</th>
<th>Toestand 2018</th>
<th>Prognose 2021</th>
<th>Prognose 2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macrofauna (EKR)</td>
<td>≥ 0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overige waterflora (EKR)</td>
<td>≥ 0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vis (EKR)</td>
<td>≥ 0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fytoplankton (EKR)</td>
<td>NVT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Algemeen fysische chemie

<table>
<thead>
<tr>
<th>Parameter</th>
<th>W-MAX</th>
<th>Toestand 2009</th>
<th>Toestand 2015</th>
<th>Toestand 2018</th>
<th>Prognose 2021</th>
<th>Prognose 2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfor totaal (zm) (mg P/l)</td>
<td>≤ 0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stikstof totaal (zm) (mg N/l)</td>
<td>≤ 2.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN (winterperiode) (mg N/l)</td>
<td>NVT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoutgehalte (zm) (mg Cl/l)</td>
<td>≤ 150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatuur (max. waarde) (gr C)</td>
<td>≤ 25.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zuurgraad (zm) (-)</td>
<td>6.5 - 8.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zuurstofverzadiging(sgraad)(zm) (%)</td>
<td>80 - 120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doorzichtigheid (zm) (m)</td>
<td>NVT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specifieke verontreinigende stoffen (normoverschrijding)

<table>
<thead>
<tr>
<th>Stof</th>
<th>Toestand 2009</th>
<th>Toestand 2015</th>
<th>Toestand 2018</th>
<th>Prognose 2021</th>
<th>Prognose 2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>propoxur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zink</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legenda:
- **blauw** = zeer goed / voldoet
- **groen** = goed
- **geel** = matig
- **oranje** = ontoereikend
- **rood** = slecht / voldoet niet
- leeg = geen gegevens

*: deze toestandsbeoordeling betreft een expertoordeel.

Afhankelijk van het type KRW-waterlichaam dat gebruikt is voor de toestandsbeoordeling (het doeltype, hier R18) zijn bepaalde maatlatten niet van toepassing. Deze maatlatten zijn met NVT in de toestandscolommen gemarkeerd.

Figuur 2 Waterkwaliteit KRW Geleenbeek (Waterschap Limburg, 2018)
Grondwatersysteem
In Zuid – Limburg stroomt het grondwater in noordwestelijke richting (Figuur 3), het stroomt dus in de richting van de Maas. De grondwaterstrooming wordt beïnvloed door de verschillende breuken die door het gebied lopen, deze zijn vaak slecht doorlatend. De Geleenbeek is een klein en ondiep systeem, dit betekent dat de hydrologische basis dicht op het maaveld ligt (Provincie Limburg, 2017).

Door het gebrek aan gegevens over kwel en infiltratie in Zuid-Limburg is het er maar weinig bekend over kwel in het Geleenbeekdal. Vermoed wordt dat kwel uit diepe systemen zorgt voor een stabielere grondwaterstand in kwelgebieden zoals het Karthagerbroek. Kwelwater dat in dit gebied omhoog komt heeft hoge concentraties van sulfaat, chloride en nitraat. Deze concentraties komen waarschijnlijk van landbouwgronden en de bruinkoollagen uit de Formatie van Heksenberg. Verwacht wordt dat lokale systemen en de Geleenbeek zelf een rol spelen in het grondwatersysteem. De Geleenbeek is een diep ingesneden beek doordat deze vroeger gekanaliseerd is, hierdoor heeft de beek een drainerende werking op de omgeving (Provincie Limburg, 2009).

Grondwaterkwaliteit

2.3. Natuur en bodem

Natuur
Het Geleenbeekdal is een reliëfrijk beekdal dat wordt gevoed kalkrijk kwelwater, hierdoor zijn er soortenrijke broekbossen en natte graslanden binnen dit gebied te vinden. De beek stroomt door vijf verschillende gemeenten (Heerlen, Voerendaal, Nuth, Schinnen en Beek en Geleen en Sittard). Dit zorgt voor een versnippering van deelgebieden (Provincie Limburg, 2009).

Ruigten en bossen komen voornamelijk voor rondom de Geleenbeek. Op de natte, kwelrijke plekken wordt vooral elzenbroekbos aangetroffen, dit is kenmerkend voor kwelgebieden.

Op de droge hellingen komt veel eiken-haagbeukenbos voor. Deze bossen hebben een gevarieerde vegetatiestructuur, met zowel een hoge als een lage boomlaag, een struiklaag en een soortenrijke kruidlaag. Deze gevarieerde structuur wordt in stand gehouden door antropogeen bosbeheer.

Het projectgebied bevat nog drogere löss en grindgronden, op deze plaatsen wordt voornamelijk eiken-beukenbos aangetroffen. Dit type valt tussen de Oude eikenbossen en de Eiken-haagbeukenbossen in.

Een belangrijk deel van de begroeiing van het Geleenbeekdal wordt aangetroffen onderaan de hellingen dichter in de buurt van de beek. Deze begroeiing bestaat uit het habitattype Vochtige alluviale bossen, dit
type is te vinden onderaan de hellingen in beek- en rivierdalen waar basenrijk water uit de ondergrond komt en de bodem blijvend vochtig is.
Binnen het Geleenbeekdal ligt een natuurgebied waar het habitats type kalkmoerassen aanwezig is; het Kathagerbroek. Kalkmoerassen komen voor op plekken met gelijkmatig natte basenrijke omstandigheden, dit betekent dat deze locaties een permanente aanvoer hebben van kalkrijk groundwater (Provincie Limburg, 2017).

Bodem

In een beekdalbodem komt ijzer in twee vormen voor; tweewaardig ijzer (Fe²⁺) onder anaerobe omstandigheden en driewaardig ijzer (Fe³⁺) onder aerobe omstandigheden. Fe³⁺ is een belangrijk onderdeel van de bodem, het bindt namelijk fosfaat. Wanneer een gebied vernat wordt dan ontstaan er anaerobe omstandigheden, hierdoor wordt Fe³⁺ omgezet in Fe²⁺ en komen de geïmmobiliseerde fosfaten vrij. Fe²⁺ bindt fosfaat minder makkelijk dan driewaardig ijzer. Wanneer de bodem meer ijzer bezit dan fosfaat is vernatting geen probleem, tenzij dat sulfaat aanwezig is. Sulfaat reageert namelijk met organische stof waarbij vervolgens sulfide ontstaat. Sulfide heeft betere eigenschappen om te binden met het gereduceerde ijzer dan het fosfaat. Hierdoor bindt het ijzer zich aan het sulfide, hierbij ontstaat pyriet en komt het fosfaat vrij (deze reactie is verbeeld in Figuur 5). Sulfide is bovendien een hele giftige stof en is moeilijk omkeerbaar. Het is dus van belang om de concentraties ijzer in de bodem te onderzoeken voordat een gebied vernat wordt (van Hal & Roels, 2015).

![Figuur 5 De interacties tussen ijzeroxiden met en zonder sulfaat (Kemmers & Koopmans, 2009) (Lamers, 2001)](image-url)
2.4. Uitgevoerde maatregelen

De Geleenbeek was van nature een snelstromende licht meanderende beek, welke een onregelmatige bodemstructuur had. De afvoer van de beek wordt is redelijk constant. Vroeger is de beek voor de afvoer van water van de steenkoolmijnen genormaliseerd, verbreed en vast gelegd in betontegels (Waterschap Limburg, 2018).

In de jaren negentig is het herstellen van de beek begonnen. In het kader van het herstellen van de beek zijn verschillende maatregelen uitgevoerd over de afgelopen jaren. Deze maatregelen variëren van het herstellen van de beek zelf, tot het aanpakken van problematiek zoals verstedelijking. De maatregelen die op de beek zijn uitgevoerd zijn vooral onderdeel van het project Coria Glana. Het doel van dit project is om de beek te herstellen naar de natuurlijke staat en daarmee verbeteringen aan te brengen in de natuur en omgeving. Naast het direct herstellen van de beek richt het project zich ook ontwikkelingen langs de beek, dit gaat vooral over landgoederen, stadsparken en beekdalen in connectie met de Geleenbeek. Hierdoor wordt het Geleenbeekdal ontwikkeld tot een groene ecologische zone.

In de onderstaande tabel (Tabel 1) zijn de verschillende maatregelen uitgelegd met de reden voor het uitvoeren en de effecten die op het gebied.

Tabel 1 Uitgevoerde maatregelen Geleenbeekdal (Waterschap Limburg, 2018)

<table>
<thead>
<tr>
<th>Plaats</th>
<th>Maatregel</th>
<th>Reden</th>
<th>Effect</th>
<th>Omvang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gemeente</td>
<td>Afkoppelen verhard oppervlak</td>
<td>De beek heeft te maken met hoge piek afvoeren ten tijden van hevige regenval</td>
<td>Door het verhard oppervlak rondom de beek af te koppelen, wordt er minder water aangevoerd vanuit het stedelijk gebied</td>
<td>28,5 ha</td>
</tr>
<tr>
<td>Heerlen</td>
<td>Beekherstel Geleenbeek; Hermeandering en herinrichting van de beek.</td>
<td>Deze maatregel wordt uitgevoerd omdat de beek morfologie en de inrichting van de oevers niet voldoet aan de gestelde doelstellingen van het gebied.</td>
<td>De beek krijgt meer ruimte om terug te vormen naar zijn natuurlijke vorm. Daarnaast draagt de maatregel bij aan het realiseren van de gestelde hydromorfologische randvoorwaarden</td>
<td>28 km</td>
</tr>
<tr>
<td>Corio Glana</td>
<td>De belasting van nutriënten vanuit RWZI Heerlen verminderen, door de RWZI te verplaatsen naar Hoensbroek</td>
<td>RWZI Heerlen is gevestigd in een Natura 2000 gebied en ligt aan het landgoed, de RWZI verstoort de landschappelijke kwaliteit van het gebied.</td>
<td>Door de RWZI te verplaatsen is de belasting bovenstrooms sterk verminderd</td>
<td>1 RWZIF</td>
</tr>
<tr>
<td>Sittard-Geleen</td>
<td>Aanpakken overstorten van gemengde rioolstelsels, door aanleggen van groene bergingen</td>
<td>Overstorten van de riooleringen op de beek, zorgt voor een slechte waterkwaliteit</td>
<td>Door het aanleggen van groene bergingen duurt het langer voordat de gemengde stelsels overstorten ten tijde van hevige regenval. Dit zorgt voor minder rioolwater in de beek, en dus een beter waterkwaliteit</td>
<td>2 overstorten</td>
</tr>
</tbody>
</table>
2.5. Waterwijzer

2.5.1. Natuur

In dit onderzoek is gekeken naar de doelrealisatie van de GLG, GVG, kwel, droogtestress, totale doelrealisatie en de maximaal haalbare totale doelrealisatie van de natuurgebieden in het onderzoeksgebied. Hierbij is de totale doelrealisatie de som van de GLG, GVG en droogtestress. Kwel is niet meegenomen, omdat er geen informatie beschikbaar was over de kwel in het projectgebied.

Doelrealisatie droogtestress

Kijkend naar de doelrealisatie met betrekking tot droogtestress in Figuur 6 is een grote variatie in realisatie te zien. Grofweg heeft één derde van de natuurgebieden in het project zijn doelrealisatie qua droogtestress gehaald. Ongeveer één derde van de natuurgebieden heeft bijna de doelrealisatie behaald, namelijk 60 tot 80% is al voltooid. De overige natuurgebieden, ongeveer één derde, heeft niet meer dan 2,5% van de opgestelde doelrealisatie qua droogtestress behaald.

Figuur 6 Doelrealisatie droogtestress
Totale doelrealisatie

In Figuur 7 is de totale doelrealisatie van de natuurgebieden weergegeven. Opvallend is dat dit figuur nagenoeg hetzelfde eruit ziet als de doelrealisatie droogtestress. Dit komt doordat de doelrealisatie van GLG, GVG en kwel bijna allemaal behaald zijn.

De natuurgebieden die hun doelrealisatie nog niet behaald hebben kennen voornamelijk het natuurdoeltype N12.02 en in mindere mate N15.02. N12.02 betreft kruiden- en faunarijk grasland en N15.02 betreft dennen-, eiken- en beukenbos (Bij12, sd).
Maximaal haalbare totale doelrealisatie
Bij de maximaal haalbare totale doelrealisatie is per vegetatievlak de GVG en GLG met kleine stapjes verhoogd. Dit wordt gedaan om vast te stellen wat maximaal haalbaar is aan totale doelrealisatie, gegeven de variatie in maaiveldhoogte per vegetatievlak (Witte, 2018).

In Figuur 8 is zichtbaar dat het deel van de natuurgebieden dat bij de totale doelrealisatie slecht scoorde nu 20 tot 60 procent van de realisatie heeft behaald. Het meenemen van de variatie van de maaiveldhoogte per vegetatievlak heeft dus veel invloed op de mate van haalbaarheid van het doel voor de natuurgebieden.
2.5.2. Landbouw

Om de doelrealisatie van de landbouw in het projectgebied in kaart te brengen is gekeken naar het percentage zuurstoftekort, droogtestress en totale opbrengstderving. Zoutstress is niet meegenomen in dit onderzoek, omdat geen informatie bekend was over de zoutconcentraties.

Zuurstofstress

In Figuur 9 is het percentage zuurstofstress weergeven voor het jaar 1998. Opvallend is dat ongeveer 95 procent van de landbouw minder dan 20 procent van het jaar zuurstofs stress kent. Dit terwijl 1998 een neerslagoverschot van ongeveer 750 millimeter kent.

De zuurstofstress die optreedt vindt voornamelijk plaats op percelen langs beken. Zo vindt er zuurstofstress plaats op percelen langs de Huisbergbeek en Bissebeek in het zuiden van het projectgebied. In het westen vindt dit plaats op landbouwpercelen langs de Keutelbeek. Het grootste cluster van percelen die zuurstofstress kennen liggen tussen de binnenbocht van de Geleenbeek en de A76 onder de plaats Schinnen.

De landbouwpercelen met zuurstofstress verbouwen hoofdzakelijk gras. In mindere mate zijn het ook percelen met wintertarwe en snijmais die zuurstofstress kennen.

Vergeleken met de andere drie doorgerekende klimaatperiodes is bij de klimaatperiode 1998 de zuurstofstress het grootst. De percelen met meer dan 50 procent zuurstofstress hebben bij de andere klimaatperiodes maar een percentage van 30 tot 40 procent.
Droogtestress
De mate van droogtestress die de gewassen ondervinden voor de klimaatperiode 2003 is in Figuur 10 weergeven. Zichtbaar is dat de mate van droogtestress niet verdeeld is in clusters, maar verspreid over het gehele projectgebied. De landbouwpercelen die meer dan 50 procent droogtestress ondervinden produceren voornamelijk snijmais en suikerbiet. Deze twee gewassen worden pas vanaf september geoogst (Werkgroep Handboek snijmaïs, 2018). Het snijmais en de suikerbieten groeien tijdens de zomer, wanneer de hoeveelheid van neerslag vaak gering is. Hierdoor ondervinden ze in vergelijking met ander gewassen die eerder in de zomerperiode worden geoogst meer droogtestress. Daarnaast kennen de percelen met droogtestress een lage grondwaterstand (>2-mv). Hierdoor kunnen de gewassen moeilijk bij het grondwater.

In vergelijking met de andere drie klimaatperiodes is de mate van droogtestress bij de klimaatperiode 2003 het hoogst. De mate van droogtestress neemt respectievelijk met de volgorde van klimaatperiodes: 2003, Wh gemiddeld, huidige klimaat en 1998 af.

Figuur 10 Percentage droogtestress voor klimaatperiode 2003
Totale opbrengstderving

In Figuur 11 is de totale opbrengstderving voor het projectgebied in het huidige klimaat weergeven. De totale opbrengstderving is de som van de directe en indirecte opbrengstderving. De directe opbrengstverderving is daarbij de som van zuurstof- en droogtestress. Kijkend naar Figuur 11 komen de percelen met een opbrengstderving van 30 tot 40 procent over een met de percelen uit Figuur 10 die meer dan 60 procent droogtestress kennen. De percelen die een opbrengstderving 30-40 procent kennen zijn dus landbouwpercelen die snijmais en suikerbieten verbouwen en percelen die langs beken liggen.

In vergelijking met de andere drie klimaatperiodes is de mate van totale opbrengstderving bij de klimaatperiode 2003 het hoogst. De mate van opbrengstderving neemt respectievelijk met de volgorde van klimaatperiodes: 2003, Wh gemiddeld, huidige klimaat en 1998 af.

![Figuur 11 Totale opbrengstderving huidig klimaat](image)
3. Knelpunten en problemen

In dit hoofdstuk worden de verschillende knelpunten en problemen die uit de analyse zijn gekomen uitgelegd.

In de onderstaande tekst worden een zestal knelpunten in het projectgebied benoemd op het gebied van waterhuishouding, van de landbouw en natuur.

Zoals aangegeven in Hoofdstuk 2 in paragraaf 2.2 Watersysteem, heeft de Geleenbeek een drainerende werking doordat de beek zo diep is ingesneden. De drainerende werking heeft twee gevolgen, het gebied rondom de beek verdroogt en er treedt kwelvermindering op. Deze twee gevolgen zorgen voor problemen bij de vochtige alluviale bossen die langs de beek voorkomen. Deze bossoort heeft veel baat bij een vochtige ondergrond, wanneer dit verminderd zal de hoeveelheid vochtige alluviale bossen afnemen. Het behoud van deze bossen is erg belangrijk in de ogen van Natuurmonumenten en het Natura 2000-beheerplan. Vochtige alluviale bossen is niet de enige vegetatie die gevoelig is voor verdroging van de ondergrond, daarom is het van belang om een oplossing te integreren in het gebied.

De kwaliteit van het grondwatersysteem rondom de Geleenbeek is matig. Deze matige kwaliteit is te danken aan de bemesting van de landbouwgebieden. De bemesting zorgt dus voor een verhoging van nitraat en fosfaat in zowel het oppervlakte- als het grondwater. Belangrijk om te onthouden is dat deze matige kwaliteit geldt voor de ondiepe grondwater, de diepere grondwater dat afkomstig is uit het kalksteenpakket is waarschijnlijk niet tot nauwelijks vermest.

De ligging van spoorlijn Heerlen-Sittard en de snelweg A76 zijn ecologische barrières in het projectgebied. Daarnaast is door de intensivering van de landbouw en de verstedelijking een groot deel van het kleinschalige landschap verdwenen. Hierdoor wordt de natuuruitwisseling tussen de natuurgebieden in het gebied belemmerd.

Zoals naar voren is gekomen uit de waterwijzer landbouw is een groot deel van de landbouwpercelen gevoelig voor droogte. Uit paragraaf 2.3.1 blijkt dat ook een groot deel van de natuurgebieden in het projectgebied last hebben van droogtestress. Door klimaatveranderingen zullen droogten zoals uit 2003 en 2018 vaker voorkomen en wordt droogte en daarbij komend droogtestress een groter probleem. Kijkend naar de knelpunten uit het beheerplan Geleenbeekdal kampt het overgrote deel van de deelgebieden met verdroging. Uit de waterwijzer Natuur blijkt dat de natuurgebieden met het natuurdoeltype kruiden- en faunarijk grasland niet aan hun doelrealisatie voldoen. Dit wordt veroorzaakt doordat ze veel droogtestress ondervinden.

Naast droogtestress zijn er ook een aantal landbouwpercelen die last hebben van zuurstofstress. Dit komt voor langs de verschillende beken die in het projectgebied stromen. Daarnaast zijn een aantal percelen gevoelig voor zuurstofstress bij Kathager door de vernatting die plaats heeft gevonden in 1965. In 1965 is
aan de oordzijde van de Geleenbeek bij het maaiveld gedaald is als gevolg van mijnverzakkingen. Hierdoor staat grote delen van het terrein daar nu permanent onder water.

Ondanks dat de bovengenoemde knelpunten allemaal van belang zijn voor zowel de Geleenbeek als de omgeving zal in het volgende hoofdstuk niet voor alle knelpunten maatregelen worden bedacht. Er zullen alleen maatregelen worden aangedragen voor de onderste drie knelpunten. Gezien de overige knelpunten of al binnen de ambitie van de provincie en waterschap of binnen de Natura-2000 gebieden vallen, zal in dit rapport daar geen maatregelen voor worden bedacht.
4. Maatregelen en consequenties

In dit hoofdstuk worden voor drie delen in het projectgebied maatregelen bedacht om de knelpunten die in het vorige hoofdstuk zijn beschreven op te lossen. Hierbij wordt qua maatregelen gefocust op natuurontwikkeling en het ontwikkelen van een voedselbos.

In het onderstaande figuur (Figuur 12) zijn de locaties van de percelen waar de verschillende maatregelen voor zijn bedacht weergeven. Per perceel worden de maatregelen nader toegelicht.

Figuur 12 Locatiekaart
4.1. Voedselbos
De locatie voor een voedselbos in het projectgebied is in Figuur 12 met groen aangegeven. Uit de analyse met de Waterwijzer landbouw bleek dat dit perceel en een aantal omliggende percelen meer dan 60 procent zuurstofstress ondervinden. De locatie ligt tussen de A76 en de spoorlijn Heerlen-Sittard. Wateroverlast op de percelen tussen deze twee vervoerslijnen kan op lange termijn nadelig zijn voor de spoorlijn en de A76. Door het aanleggen van een voedselbos wordt de waterbergingscapaciteit van de grond vergroot en neemt de kans op zuurstofstress voor het perceel af.

Daarnaast is gekozen om een voedselbos aan te leggen als natuurontwikkeling en uitbreiding van de ecologische verbindingzone in het gebied. De keuze is op voedselbos gevallen omdat het zowel een product als een dienst is. Een voedselbos zal het gebied op economisch, ecologisch als sociaal vlak verbeteren.

4.1.1 Wat is een voedselbos
Een voedselbos is een vorm van meerjarige landbouw waarbij het ontwerp geïnspireerd is op de opbouw van een natuurlijk bos. In tegenstelling tot een natuurlijk bos is een voedselbos ontworpen met een overwicht aan voedselproducerende soorten. Een voedselbos onderscheidt zich ten opzichte van een boomgaard of traditionele landbouw door het meerlagen systeem dat het kent. Landbouw is tegenwoordig monocultuur en maakt maar gebruik van één laag, terwijl in een voedselbos zeven lagen te vinden zijn. In een voedselbos zijn houtige soorten dominant. Naast dat een voedselbos voedsel produceert biedt het ook onderdak aan organismen (voedselbos.eu, sd).

De verschillende lagen die in een voedselbos vorkomen zijn (Figuur 13):
1. Kruinlaag: de grootste bodem, groter dan achter meter;
2. Tussenlaag: vormt de onderlaag en staan in de schaduw van de hogere bodem;
3. Struiklaag;
4. Kruidlaag;
5. Bodembedekkers;
6. Klimplanten;
7. Wortels en knollen (voedselbos.eu, sd) (Siepel, Velthuis, Zondergeld, & Schimmel, 2018);

![The Seven Layers of a Forest Garden](image)

Figuur 13 Opbouw voedselbos (Permacultuur Nederland, sd)
4.1.2 Voordelen voedselbos

De voordelen die een voedselbos kent kunnen opgedeeld worden in vier categorieën. In de onderstaande tekst wordt per categorie de potentie van een voedselbos beschreven.

1. Klimaat

Een voedselbos kan door zijn meerlagensysteem meer CO2 vastleggen. Door het meerlagenysteem is het hele jaar rond beplanting aanwezig, waardoor continu fotosynthese plaatsvindt en daarmee ook de vastlegging van CO2. Daarnaast zorgt een voedselbos net als andere bossen in een het Nederlands klimaat voor de opname van stikstof en andere gifstoffen en de uitstoot van zuurstof. Verder zorgt een voedselbos voor een betere doorworteling van de bodem, een toename van bodemleven en organische stof in vergelijking met een landbouwgrond. Hierdoor kan er water makkelijker infiltreren en wordt de sponswerking van de bodem vergroot (Koepelplan Voedselbossen Deltaplan Hoge Zandgronden, 2018) (Slie, 2016).

2. Productie

Een groot voordeel van een voedselbos ten opzichte van een landbouwgrond is dat elke standplaats wordt benut. De ecologische hulpbronnen worden efficiënter benut. De diepe wortels van de bomen zorgen voor het vrijkomen van nutriënten die dieper in de bodem waren opgeslagen. Door de verschillende lagen en de verschillende lengtes van de wortels van de gewassen wordt er efficiënter omgegaan met licht en water. Door de verschillende lagen voedsel onder elkaar is de opbrengst per vierkante meter groter. Daarnaast produceert een voedselbos naast voedsel ook biomassa (bv. hout) en vee (WUR, sd) (Koepelplan Voedselbossen Deltaplan Hoge Zandgronden, 2018).

In Tabel 2 is het percentage zuurstofstress, de opbrengst van het gewas in euro’s en opbrengst biomassa in kg/ha. Voor de oude situatie en de nieuwe situatie. Deze waarden zijn berekend middels de Waterwijzer landbouw. In de oude situatie staat op het gekozen perceel wintertarwe en in de nieuwe situatie appelbomen. Dit komt het beste overeen met een voedselbos, gezien landbouwcodering nog geen code heeft voor een voedselbos. In Tabel 2 is te zien dat het percentage zuurstofstress afneemt en de opbrengst in zowel euro’s en biomassa toeneemt. Figuur 14 de mate van zuurstofstress in het projectgebied weergeven met het appelbomen op het uitgekozen perceel.

Figuur 14 Zuurstofstress met appelbomen op perceel
Tabel 2 Oude situatie vs. nieuwe situatie

<table>
<thead>
<tr>
<th></th>
<th>Zuurstofstress (in %)</th>
<th>Opbrengst (in euro’s)</th>
<th>Opbrengst biomassa (in kg per ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oude situatie</td>
<td>73,7</td>
<td>1904</td>
<td>8517</td>
</tr>
<tr>
<td>Nieuwe situatie</td>
<td>39,8</td>
<td>21586</td>
<td>29369</td>
</tr>
</tbody>
</table>

3. **Flora en fauna**

Een voedselbos fungeert als habitat voor verschillende macro-organisme, vogels en zoogdieren. Doordat een voedselbos een leefgebied biedt voor een verscheidenheid aan flora en fauna wordt de biodiversiteit van het gebied verhoogd. Daarnaast kan een voedselbos ook als beschutting dienen voor vee dat in het voedselbos of om de omliggende percelen leeft (WUR, sd).

4. **Recreatie en natuur**

Het enigste nadeel van voedselbossen is dat ze een tijd nodig hebben om zich goed te kunnen ontwikkelen. Het duurt vijf tot zeven jaar voordat een voedselbos ontwikkeld is tot een zelfstandig en goed werkend ecosysteem. In de eerste zeven jaar produceren voedselbossen nog niet genoeg om winst te maken. Na twintig jaar produceren voedselbossen pas optimaal (Slier, 2016).

4.1.3 **Voedselbos vs. landbouw**

Door de jarenlange opbouw van wortelresten, humus, bladeren en hout kent een voedselbos een hoog organisch stofgehalte in vergelijking met de akkerbouw en groenteteelt. Martin Crawford uit Engeland heeft al een langere tijd een voedselbos en meet twintig procent organische stof in zijn voedselbosbodems. Dit is een grote hoeveelheid organische stof in vergelijking bij akkerbouw en groenteteelt waar drie procent wenselijk is (Nutrinorm, sd). Door de grote hoeveelheid organische stof in de bodems kunnen voedselbossen veel meer waterbergen dan een akkerbouwgrond.

Het uitgekozen perceel heeft een oppervlak van 2,11 hectare en een grondwaterstand variërend van 16 tot 139 centimeter beneden maaiwild. Wat opvallend is dat het perceel wat ernaast ligt een grondwaterstand kent van meer dan twee meter beneden maaiwild. Het projectteam beveelt aan om in en nadere onderzoek hier extra aandacht aan te besteden.

Uit diverse onderzoeken is gebreken dat één procent extra organische stof 170 m³ water kan vasthouden per hectare, dit is dus niet afhankelijk van de grondwaterstand. Met het huidige landgebruik van het perceel zou de bodem rond de drie procent organische stof bevatten (Koepelplan Voedselbossen Deltaplan Hoge Zandgronden, 2018).

\[
\text{Hoewelheid water} = 3\% \times 170 \text{ m}^3 \times 2,11 \text{ ha} = 1076,1 \text{ m}^3
\]
Zoals het perceel er nu bij ligt kan 1076,1 m3 water worden vastgehouden, zie bovenstaande berekening. Dit is ongeveer één zevende van de hoeveelheid water dat een voedselbos op dat perceel kan vasthouden, uitgaande van 20 procent organische stof. Ze onderstaande berekening.

\[\text{Hoeveelheid water} = 20\% \times 170 \, m^3 \times 2,11 \, ha = 7163,8 \, m^3 \]

De hoeveelheid organische stof is in het begin van de ontwikkelperiode nog niet zo hoog. Dit heeft een aantal jaren nodig om op te bouwen. Uit het rapport Koepelplan Voedselbossen Deltaplan Hoge Zandgronden blijkt dat na een half jaar al humusopbouw heeft plaatsgevonden. De omlijgende percelen kennen ook zuurstofstress en zouden dus ook ontwikkeld kunnen worden tot een voedselbos of een groot voedselbos, zie Figuur 14. Hierdoor zou er nog meer water kunnen worden geborgen.

Naast het groter bergend vermogen dat een voedselbos heeft in vergelijking met traditionele landbouw zijn er nog een aantal verschillen. Door de verschillende lagen wordt de bodem en zon optimaal benut. Een voedselbos kent verhoogde transpiratie en minder verdamping door de bedekking van de bodem. Zoals al eerder benoemd kan in de bodem van een voedselbos meer water infiltreren door onder andere de betere worteling (Koepelplan Voedselbossen Deltaplan Hoge Zandgronden, 2018).

Als gekeken wordt naar de kwetsbaarheid van een voedselbos ten opzichte van een traditionele landbouwgrond komt naar voren dat voedselbossen minde kwetsbaar zijn. Een voedselbos ontwikkelt zichzelf met behulp van ecosystemen, kringlopen en natuurlijk processen. Een voedselbos is daardoor veel minder kwetsbaar voor een plaag. Als er een plaag plaatsvindt in het voedselbos is maar één gewas getroffen en kunnen nog honderden andere soorten wel geoogst worden (Slier, 2016).
4.2. Droge Natuur

Tijdens de analyse met de waterwijzers kwam naar voren dat een groot deel van de landbouwpercelen in het projectgebied droogtestress ondervinden. Daarom is een van deze percelen uitgekozen om natuur op te ontwikkelen. Het gekozen perceel ligt ten noordoosten van Industrieterrein de Horstel en ten zuiden van de A76. Naast droogtestress is voor dit perceel gekozen om de versnijdering van de natuurpercelen in het projectgebied tegen te gaan. Het gekozen perceel grenst aan een Goudgroene natuurzone en ligt ook dichtbij een ander Goudgroene natuurzone. Om deze twee natuurgebieden met elkaar te verbinden is er gekozen om op dit perceel natuur te ontwikkelen. Het perceel wordt gebruikt om suikerbieten op te verbouwen en kent een diepe grondwaterstand. Hierdoor is het grondwater niet geschikt voor de suikerbieten dat erop wordt verbouwd, maar wel geschikt voor droge natuur. Zie Figuur 12 voor de ligging van de percelen.

Om dit gebied om te kunnen vormen naar droge natuur is het van belang om eerst het gebied te verschalen. De fosfaatvoorraad is een aspect dat een belangrijke rol speelt bij de omvorming van landbouw naar natuur. De fosfaatvoorraad is vaak veel te hoog door de jarenlange bemesting. Daarnaast heeft fosfaat als eigenschap dat het zich sterk bindt aan de bodem. Het stoppen van bemesten heeft daarom niet veel effect op het omlaag brengen van de voorraad. Om de fosfaatvoorraad omlaag te brengen moet er iets worden gedaan. Er zijn verschillende manieren om de fosfaatvoorraad te verminderen bijvoorbeeld: plaggen, ontgronden en uitmijnen van fosfaat met productieve gewassen. Voor dit perceel wordt gekozen om de fosfaatvoorraad te verminderen middels het uitmijnen van fosfaat (Groenkennisnet, 2018).

Voordat een van deze maatregelen wordt uitgevoerd moet gemeten worden hoeveel fosfaat aanwezig is in bodem. Dit kan gedaan aan de hand van een bodemmonster. Tijdens dit onderzoek worden geen bodemmonsters van het projectgebied genomen door een gebrek aan tijd. Daarom is er gekozen om voor het uitgekozen perceel om de fosfaatvoorraad te verminderen middels het uitmijnen van fosfaat. Ondanks dat uit een nader onderzoek wellicht blijken dat dit niet juiste manier is om het fosfaat te verwijderen uit de bodem.

Aan de hand van de hoeveelheid P-totaal en het beschikbare hoeveelheid fosfaat (PAI) kan de geschatte tijdsduur van het uitmijnen worden berekend. De formule die hiervoor wordt gebruikt staat hieronder beschreven:

\[
Geschatte\ tijdsduur\ uitmijnen = \frac{P_{totaal} \times 39}{90} - \left(\frac{(P_{totaal})}{PAI} \times 195 \right)
\]

Het uitmijnen van fosfaat kan met verschillende gewassen gebeuren. Het uitmijnen met gras en klaver geven de beste resultaten voor het verlagen van de nutriënten. De effectiviteit van uitmijnen hangt niet alleen af van het gewas, maar is ook afhankelijk van de maaifrequentie. Voor een hoge fosfaatafvoer moet er vier tot vijf keer per jaar worden gemaaid (Timmermans, Eekeren, Finke, Smeding, & Bos, sd).

Er zijn echter wel een aantal aspecten waar rekening mee moet worden gehouden als het om uitmijnen gaat. Deze punten zijn:

1. De bodem van het perceel bestaat uit löss, gezien het perceel op de helling van het beekdal ligt. Hierdoor treedt na enkele jaren een kalium te kort op. Kalver is gevoelig voor ene te kort aan Kalium. Daarom moet voor een effectievere uitmijnen tegelijkertijd ook kalibemesting plaatsvinden.

Gezien er geen informatie bekend is over de hoeveelheid fosfaat in de bodem is het moeilijk te zeggen of het uitmijnen succesvol zal zijn. Uitgaande dat het uitmijnen succesvol verloopt en P-beschikbaar voor het schraalste natuurdoeltype wordt bereikt kan een droog schraalgrasland (N11.01) worden gevormd. Gezien het perceel op de helling van het beekdal ligt zou zowel heischrale als kalkgraslanden kunnen voorkomen. In Zuid-Limburg komen op sommige plekken kalksteen ondiep in de bodem voor, waardoor kalkgraslanden kunnen ontstaan (bij12, sd) (Kennisnetwerk OBN, sd).

Als P-beschikbaar niet voor het schraalste natuurdoeltype wordt bereikt kan er in plaats van droog schraalgrasland kruiden- en faunarijk grasland worden ontwikkeld (N12.02). Dit beheertype kan voorkomen op diverse bodems van vochtig tot droog met doorgaans een matig voedselrijk karakter (bij12, sd).

4.3. Natte Natuur
Tijdens de analyse van de waterwijzers kwamen een aantal gebieden met zuurstofstress naar voren. Daarom is een van deze percelen uitgekozen om natte natuurontwikkeling op uit te voeren. Dit gebied wordt gebruikt als grasland en ligt dicht in de buurt van de Geleenbeek. Daarnaast heeft het gebied te maken met een regelmatige hoge grondwaterstand. Hierdoor is dit van nature al een nat gebied, en werkt daarom niet goed als landbouwgebied. Naast dat dit gebied niet goed functioneert, ligt dit gebied in de buurt van de belangrijke natuurgebieden. Door dit gebied te ontwikkelen tot een natuurgebied, wordt de ecologisch verbindingzone in het gebied uitgebreid.

Om dit gebied om te kunnen vormen naar natte natuur is het van belang om het gebied eerst te verschralen. Dit gebeurt door het gebied af te plaggen. Hiermee wordt de bovenste grondlaag met begroeiing verwijderd, oftewel de organische toplaag wordt verwijderd. Het doel van het afplaggen is het verwijderen van fosfaat uit de ondergrond. Doordat het gebied voorheen in gebruik was voor de landbouw, zit er waarschijnlijk veel fosfaat in de ondergrond. Vernatting van de ondergrond kan leiden tot een grote beschikbaarheid van fosfaat.

Organisch materiaal \((PO_4^{3-}) + 2H_2O \rightarrow CO_2 + 4H^+ + 4e^- + PO_4^{3-}\)

Natte condities in de bodem zorgen ervoor dat er geen tot weinig zuurstof in de bodem kan, hierdoor worden de geoxideerde ijzerverbindingen in de ondergrond gereduceerd. Hierdoor neemt het fosfaatbinding vermogen van de bodem af, waardoor de fosfaat vrij kan komen. Dit kan leiden tot ernstige eutrofiëring (Sival & Runhaar, 2009).

Het gekozen gebied is zoals aangegeven van nature al een nat gebied, waardoor het grasland zuurstofstress ervaart. Hierdoor zal het aanbrengen van natte natuur niet tot nauwelijks zorgen voor eutrofiëring door het vrij komen van fosfaten. Om te voorkomen dat het eventueel toch gebeurd, zal de bovenste laag van het grasland worden afgeplagd.

De natte natuur die hier gerealiseerd zal worden valt onder natuurdoeltype N14.01 Rivier- en beekbegeleidend bos. De voedsel- en basenrijkdom van dit type wordt voornamelijk bepaald de het overstromings- en grondwater. Het habitattype dat goed past bij dit natuurdoeltype is H91E0 Vochtige alluviale bossen die eerder zijn beschreven in hoofdstuk 2. Deze bossen worden door de provincie gezien als een belangrijk type voor dit gebied. Dit habitattype is zeer soortenrijk en kan zeldzame typische soorten bevatten. Vochtige alluviale bossen kunnen worden opgedeeld in drie subtypen, twee subtypen voor het rivierengebied en een voor beken en riviertjes. Het laatste type is van belang voor deze maatregel; H91E0_C Vochtige alluviale bossen (beekbegeleidende bossen). Dit zijn essenbossen die voorkomen in beekdalen en hebben veel overeenkomst met het vochtige hardhoutooibos. Zwarte els is de voornaamste boomsoort die hier voorkomt, daarom worden deze bossen vaak elzenbroekbossen genoemd (Bij12, 2019). In de onderstaande figuur (Figuur 15) zijn de abiotische randvoorwaarden van de beekbegeleidende bossen weergegeven.
Deze abiotische factoren komen overeen met het gekozen gebied voor de ontwikkeling van dit type. Dit is niet vreemd, gezien het feit dat omliggende gebieden ook dit habitattypen huizen. De meest voorkomende vegetatiertypen binnen dit habitattypen zijn; Associatie van Waterviolier en Sterrekroos, Associatie van Teer vederkruid, Kegelmos-associatie en Elzenzegge-Elzebroek. Overige kenmerken van dit type zijn een gevarieerde bosstructuur en gemengde soortensamenstelling, een bloemrijk voorjaar en de aanwezigheid van kwel en of bronnen (Synbiosys, 2008).

Figuur 15 Habitattype H91E0_C (Synbiosys, 2008)
4.4. Consequenties

Fosfaatkringloop

Sulfide en eutrofiering

![Figuur 16 Fosfaatkringloop (Dool, 2019)](image)

![Figuur 17 Interacties tussen Fe- en S-kringloop (Bobbink, Hart, van Kempen, Smolders, & Roelofs, 2007)](image)
5. Wetten en regelgeving
In dit hoofdstuk zijn de verschillende juridische aspecten van de voorgestelde maatregelen uitgewerkt. Per wet of regelgeving is aangeven wat deze wet inhoud en wat de gevolgen zijn voor dit project.

5.1. Wet Natuurbescherming (Wnb)
Gebiedsbescherming (Natura 2000)
In aangewezen Natura 2000 gebieden geldt dat alle handelingen die afbreuk zouden kunnen doen van de staat van instandhouding van natuurwaarden in beginsel verboden zijn.

Het aanleggen van het voedselbos en de natuurontwikkeling op een landbouwperceel in de buurt van een Natura 2000 gebied zal over het algemeen de natuurwaarden eerder verbeteren dan verslechteren. Desondanks is het belangrijk om dit te onderzoeken voordat de maatregelen worden toegepast.

Soortenbescherming
De Wet Natuurbescherming zorgt voor de bescherming van plant- en diersoorten en in het geval van diersoorten beschermt het ook de vaste verblijfsplaatsen (bijvoorbeeld nesten). Binnen deze wet staat het beschermen van populaties centraal, maar de verbodsbepalingen hebben betrekking op individuen. Deze wet is van toepassing op de gestelde maatregelen, omdat elke maatregel een ruimtelijk ingreep betreft het leefgebied van zowel planten als dieren. Daarom is het van belang om eerst een onderzoek uit te voeren of er beschermdde soorten aanwezig zijn in het gebied die door de aanleg van het voedselbos of de natuurontwikkeling bedreigd worden.

Onder bepaalde voorwaarden kan een ontheffing worden verkregen. Deze ontheffing wordt alleen verstrekt wanneer aangetoond kan worden dat de instandhouding van de aanwezige soorten niet bedreigd worden. Vervolgens moet aangetoond kunnen worden dat er geen andere alternatieven mogelijk zijn voor de aanleg. Dit kan bijvoorbeeld een andere locatie of het starten op een ander moment zijn. Tenslotte geldt vanuit de Wnb een derde toets voor de ontheffingsverlening. Dit is de belangentoets, dit houdt in dat de werkzaamheden waarvoor de ontheffing is aangevraagd als belang in de wetgeving staat (Voedsel uit het Bos, 2019).

Het aanvragen van een ontheffing voor Wnb gaat via de Rijksdienst voor Ondernemend Nederland (RVO). De ontheffing kan worden aangevraagd voor een looptijd van maximaal één jaar, één tot drie jaar of meer dan drie jaar. Hier zijn verschillende tarieven aan verbonden. Een verlenging van de ontheffing moet minimaal 13 weken voor het aflopen van de huidige ontheffing worden aangevraagd (Rijksdienst voor Ondernemend Nederland, 2019).

Bescherming van areaal bos
Naast het beschermen van soorten, beschermt de Wnb ook het areaal bos. Hiervoor geldt dat wat bos is, ook bos moet blijven. Niet alle bomen vallen onder deze bescherming; fruitbomen, kerstbomen en kweekgoed vallen bijvoorbeeld niet onder deze bescherming. Het voedselbos zal op een van origine landbouwgrond worden aangelegd, dit betekend dat er geen tot weinig bomen gekapt hoeven te worden. Hiervoor zal dan dus geen herplantingsplicht voor gelden.

Voor dit project moet een omgevingsvergunning worden aangevraagd. De aanvraag moet ingediend worden via het Omgevingsloket of bij de desbetreffende gemeente. Het aanvragen van een omgevingsvergunning via het Omgevingsloket zal ook duidelijk maken of het noodzakelijk is om een vergunning aan te vragen voor de natuurbeschermingswet. Mocht het al duidelijk zijn dat een
Natuurbeschermingswetvergunning noodzakelijk is dan kan deze voorafgaand aan de aanvraag voor omgevingsvergunning aangevraagd worden (Voedsel uit het Bos, 2019).

Een omgevingsvergunning kan op twee manieren aangevraagd worden; eenvoudig (Figuur 18) of complex (Figuur 19). Bij de eenvoudige aanvraag duurt het acht weken voordat een beslissing wordt genomen met een maximale eenmalige verlenging van zes weken. Mocht de aanvraag iets ontbreken of klopt iets niet dan kan het bevoegd gezag via het Omgevingsloket online vragen om een aanvulling. De aanvraag komt vervolgens onder de status Aanvulling gevraagd en de beslistermijn wordt opgeschort. De beslistermijn gaat weer lopen wanneer de aanvulling is ingediend of de aanvullingstermijn verloopt.

De complexe aanvraag heeft een hoog risico voor de omgeving en zal een beslissing krijgen via de uitgebreide procedure van maximaal zes maanden. Binnen de eerste acht weken kan besloten worden om de termijn eenmalig met zes weken te verlengen. Bij deze aanvraag kan ook gevraagd worden om een aanvullen en daarnaast ook een zienswijze. Het bevoegd gezag publiceert eerst een ontwerp besluit voordat een beslissing is genomen. Reageren op het ontwerpbesluit is mogelijk via het indienen van een zienswijze binnen zes weken na de publicatie. Deze zes weken vallen binnen de gestelde zes maanden.

5.2. Kaderrichtlijn Water (KRW)

De KRW is een Europese richtlijn die voorschrijft wat de waterkwaliteit van de Europese wateren dienen te zijn vanaf 2015. Binnen Nederland is dit per stroomgebied vertaald in een beheersplan en een maatregelplan. Samen moeten deze plannen ervoor zorgen dat de waterkwaliteit doormiddel van het uitvoeren van maatregels wordt verbeterd. De Geleenbeek voldoet op verschillende punten niet aan de gestelde normen. Om deze te kunnen halen zullen nog verschillende maatregelen uitgevoerd moeten worden. De KRW is zoals aangegeven een richtlijn en geen wet, dus hiervoor hoeven geen vergunningen aangevraagd te worden.
5.3. **Wet algemene bepalingen omgevingsrecht (Wabo)**

Deze wet heeft betrekking op regels ten aanzien van vergunningsstelsel met betrekking tot activiteiten die een invloed op de fysieke omgeving kunnen hebben en op de handhaving van deze regels op het gebied van de fysieke leefomgeving.

In dit project zijn drie verschillende maatregelen aangedragen die resulteren in drie projecten. In artikel 2.1. staat dat het verboden is om een project uit te voeren zonder een omgevingsvergunning, zover het project geheel of gedeeltelijk bestaat uit het gebruik van gronden of bouwwerken in strijd met een bestemmingsplan, een beheersverordening, een exploitatieplan of met de opgestelde regels uit de Wet ruimtelijke ordening (De Nederlandse Overheid, 2018).

De aanvraag van een omgevingsvergunning dient ingediend te worden bij de burgemeester een wethouders van de desbetreffende gemeente. Indien burgemeester en wethouders niet bevoegd zijn om te beslissen over de aanvraag, kan de aanvraag worden ingediend bij het bevoegd gezag. In het geval dat dit zo is dan zendt het bevoegd gezag een afschrift van de aanvraag naar de burgemeester en wethouder van de desbetreffende gemeente. Het bevoegd gezag stuurt de aanvrager zo snel mogelijk een bericht waarin vermeld wordt dat het bevoegd is om over de aanvraag te beslissen, tevens wordt hierin vermeld;
- De procedure van de voorbereiding van de beslissing,
- De beslissingstermijn,
- De beschikbare rechtsmiddelen om tegen de beschikking in te gaan,
- Indien bij de voorbereiding beslist is dat een milieueffectenrapport moet worden gemaakt, dan is artikel 13.2 van de Wet milieubeheer van toepassing.

(De Nederlandse Overheid, 2018)

De vergunning voor de Wabo kan worden aangevraagd via dezelfde procedure als beschreven is onder het kopje Wet natuurbescherming.

5.4. **Wet bodembescherming**

In de wet bodembescherming zijn regels met betrekking tot het beschermen van de bodem vastgelegd. Hieronder valt ook het aanwezig grondwater. Deze wet gaat ook over het saneren en ontgrondingen. De maatregelen binnen dit project veranderen het gebruik van de huidige bodem. Bevoegd gezag heeft bij verandering van gebruik informatie over de huidige bodemkwaliteit nodig. Dit leidt tot een bodemkwaliteitsonderzoek. Is de bodem geschikt voor natuurontwikkeling dan moet gekeken worden of maatregelen getroffen moeten worden ter bescherming van de bodem (De Nederlandse Overheid, 2017).

5.5. **Ontgrondingenwet**

Voor een van de maatregelen voor natuurontwikkeling zal de grond afgeplagd moeten worden. Om af te mogen plaggen is een ontgrondingsvergunning nodig. De volgende voorwaarden zijn van toepassing op het krijgen van een ontgrondingsvergunning:
- Het ontgronden is niet het doel zelf, maar moet een maatschappelijke meerwaarde hebben,
- Er wordt gekeken naar de archeologische, cultuurhistorische, milieu, natuur, landschaps-, hydrologie en geologische belangen,
- De ontgroning komt overeen met het bestemmingsplan,
- De eigenaar van het gebied geeft toestemming voor de ontgroning.

De aanvraag van een ontgrondingsvergunning kan ingediend worden via de website van de Provincie Limburg. De aanvraag kan ook in zesvoud opgestuurd worden naar het postadres van de Provincie Limburg (Provincie Limburg, 2019).
5.6. Waterwet
De waterwet regelt het beheer van watersystemen in Nederland. Hieronder vallen waterkeringen, oppervlakte- en grondwaterlichamen. Het hoofddoel van de wet is om te voorkomen of het beperken van overstromingen, wateroverlast, waterschaarste en de bescherming van de waterkwaliteit. Het aanleggen van natuurgebieden en een voedselbos zal waarschijnlijk een positief effect hebben op het huidige watersysteem. Wel is het van belang wat de effecten zijn op het watersysteem om te kunnen controleren of de waterwet betrekking heeft op dit project (De Nederlandse Overheid, 2018).

5.7. Wet ammoniak en veehouderij (Wav)
De drie aangewezen locaties binnen dit project zijn van origine landbouwgebied die omgezet gaan worden naar natuur. Deze gebieden kunnen onderdeel gaan uitmaken van de Ecologische Verbindingszone (EVZ) en zal onder kwetsbaar gebied worden geschaald. Dit betekend dat de afstand tussen het bedrijf en het kwetsbaar gebied gemeten moet worden van 250 meter. Deze nieuwe buffer van 250 kan leiden tot planschade bij boeren (InfoMil, 2002).

5.8. Omgevingsverordening Provincie Limburg
In 2014 heeft de Provincie Limburg regels vastgelegd op het gebied van milieu, wegen, water, grond, agrarische bedrijven, natuur, wonen en ruimte. Voor dit project is artikel 2.6.2 van toepassing, een deel van de maatregelen worden in of in de buurt van Goudgroene natuurzones uitgevoerd. Dit zijn aangewezen beschermd gebieden door de provincie, binnen deze gebieden mag volgens het artikel geen ontwikkeling plaatsvinden die de kenmerken en of waarden van het gebied aantasten. Omdat de maatregels wel degelijk het gebied aanpassen is ook artikel 2.6.5 van toepassing omdat dit een kleinschalige ingrepen zijn en de oppervlakte van de Goudgroene natuurzone niet verkleinen. Er hoeft geen vergunning aangevraagd te worden, wel is het van belang om goed met de Provincie Limburg te overleggen wat de maatregelen inhouden en wat voor gevolgen dat heeft voor de nabije omgeving (Provincie Limburg, 2014).

5.9. Waterschap Limburg

5.10. Wet ruimtelijke ordening (Wro)
In de Wro staat dat elke gemeente voor zijn gehele grondgebied een of meerdere bestemmingsplannen moet vastleggen. De bestemming van gronden wordt voor een periode van tien jaar vastgelegd. Aan elke bestemming zitten regels verbonden omtrent het gebruik van de grond. Voor de maatregelen van dit project is Artikel 3.2a van toepassing, hierin is aangegeven dat binnen een bestemmingsplan de burgemeester en wethouders een wijziging in het bestemmingsplan kunnen doorvoeren. Dit is van belang omdat de maatregelen gaan over het veranderen van de bestemming landbouw naar natuur (De Nederlandse Overheid, 2018) (Rijkswaterstaat Ministerie van Infrastructuur en Waterstaat, 2018).
5.11. Subsidieregeling

Voor het aanleggen van een voedselbos kan mogelijk een subsidie worden aangevraagd, afhankelijk van de invulling van het voedselbos. In het geval dat het voedselbos wordt aangelegd met natuurbescherming op agrarische grond kan in het kader van het Subsidiestelsel Natuur en Landschap (SNL) subsidie aangevraagd worden voor de inrichting en het beheer van het bos. Er moet rekening gehouden worden met dat dit alleen mogelijk is voor percelen die door de provincie zijn aangewezen binnen het Natuurbeproeiplan. Binnen het Natuurbeproeiplan moeten bepaalde natuurbeheertypen worden gerealiseerd, het voedselbos zou dan ook moeten voldoen aan deze regels (Voedsel uit het Bos, 2019).

De subsidie kan jaarlijks tussen 1 en 30 juni worden aangevraagd, de aanvraag kan worden ingediend bij de Rijksdienst voor Ondernemend Nederland (Bij12, 2017).
6. Conclusie en aanbevelingen

In dit hoofdstuk wordt antwoord gegeven op de vragen die in de inleiding zijn gesteld. Daarnaast worden enkele aanbevelingen gedaan met betrekking op de uitgevoerde werkzaamheden.

6.1. Conclusie

De hoofdvraag van dit onderzoek luidt als volgt: *Waar langs het Geleenbeekdal kan natuurontwikkeling en de aanleg van voedselbossen een positieve invloed hebben op de waterhuishouding?* Direct langs de Geleenbeek is het ontwikkelen van natte natuur en een voedselbos het gunstigst. Op de helling van het dal is het gunstigere om droge natuur te ontwikkelen, vanwege droogtestress dat het perceel ondervindt.

Dit antwoord kan worden onderbouwd aan de hand van de verschillend onderzoeken en analyses die tijdens dit rapport zijn uitgevoerd, te combineren. De conclusies van deze onderzoeken en analyses zijn hieronder weergeven.

De Geleenbeek wordt gevoed door het effluent van twee rwzi’s, grondwater, riool overstorten en neerslag. Hierbij zijn grondwater en afstromende neerslag de grootste bijdragers. Uit een analyse naar de waterkwaliteit blijkt dat de EKR van de Geleenbeek matig is. Daarnaast vindt er een overschrijding van de hoeveelheid fosfor en stikstof door de bemesting van de landbouwgronden. De grondwaterkwaliteit is in het projectgebied ook aangetast door de bemesting van de landbouwgebieden en door de mijnbouw die vroeger heeft plaatsgevonden.

Een knelpunten analyse laat zien dat er verschillende problemen zijn in het gebied. De drainerende werking van de Geleenbeek is nadelig voor de omliggende alluviale bossen en kruiden- en faunarijke graslanden. Daarnaast is de vervuiling van de Geleenbeek en zijn zijbeken door riool overstorten en bemesting een knelpunt binnen de waterkwaliteit van de beek. Het ondiepe grondwater is ook vervuurd door de bemesting van de landbouwpercelen en door de mijnbouw die vroeger heeft plaatsgevonden. Verder ondervindt een deel van de landbouwpercelen en natuurgebieden droogtestress. Een aantal landbouwpercelen langs de beken in het gebied ondervinden zuurstofstress.

Er is gekozen om op drie landbouwpercelen natuur te ontwikkelen, namelijk droog schraalland, rivier- en beekbegeleidend bos en een voedselbos. Voor deze percelen is gekozen omdat ze droogte- of zuurstofstress ondervinden. Deze gebieden liggen dichtbij een goudgroene natuurzone of Natura2000-gebied, zodat de verbinding tussen natuurgebieden kan worden bevorderd.

Bij het realiseren van deze drie maatregelen moet rekening worden gehouden met de Wnb, Wabo, ontrondingswet, Wro, het beleid van het waterschap en de provincie Limburg. Daarnaast is het wellicht mogelijk om een subsidie te krijgen voor het realiseren van een voedselbos.
6.2. Aanbevelingen

Over de jaren heen zijn verschillende projecten uitgevoerd en gestart in en rondom het Geleenbeekdal. Veel van deze projecten zijn momenteel nog in gang of moeten nog gestart worden, deze vaak erg lokale maatregelen hebben invloed op het grond- en oppervlaktewater. Het is belangrijk om de effecten van deze projecten op de omgeving te kunnen bepalen en voorspellen. Daarom is het van belang om de effecten van de projecten in kaart te brengen voordat maatregelen worden gerealiseerd.

Dit onderzoek is gebaseerd op literatuuronderzoek en bestaande gegevens. Voor de maatregelen is niet gekeken wat de precieze bodemopbouw en welke nutriënten aanwezig zijn in de bodem. De bodem heeft veel invloed op het lokale grondwatersysteem en kan dus van grote invloed zijn in het werkende vermogen van de maatregel.

De waterwijzer landbouw houdt geen rekening met het wisselen van landbouwfunctie. Om de ondergrond zo min mogelijk te beschadigen wisselen boeren regelmatig van soort landbouw. Met deze verandering heeft de waterwijzer geen rekening gehouden, waardoor het kan zijn dat de gekozen percelen niet de geanalyseerde knelpunten ervaren. Er wordt aangeraden om onderzoek te doen op het perceel.

Daarnaast kijkt de waterwijzer landbouw wat de invloed van de hydrologie op het landgebruik is en niet andersom. Dit betekent dat de analyse van het voedselbos met de Waterwijzer landbouw inaccuraat is. De waterwijzer kan namelijk niet aan de hand van landgebruik zien wat het effect is op het watersysteem. Hierdoor kan niet goed gezegd worden wat voor een invloed een voedselbos heeft op de omgeving. Daarom wordt geadviseerd om meer onderzoek te doen naar voedselbossen en de hydrologische werking hiervan.
Bibliografie

Bijlagen

1. Reflectie op het onderzoek

In deze bijlage wordt beknopt teruggerekend op het onderzoekstraject waarbij de beperkingen van het onderzoek zullen worden besproken en aanbevelingen worden gedaan op een eventuele verbetering in de toekomst.

Startfase

In deze fase van het project zijn gesprekken gevoerd met de Familie Knops en het Waterschap tijdens een velddag binnen het projectgebied. De informatie die hierbij verkregen is was erg nuttig om een scherp beeld van het gebied te krijgen. Echter hadden tussen de projectteams en de opdrachtgever meer gesprekken kunnen plaatsvinden om een zo goed mogelijk beeld te kunnen vormen van de wensen en eisen.

Vervolg: meer contact met de opdrachtgever over het onderzoek.

Literatuuronderzoek

Voor dit onderzoek is voornamelijk gebruikt gemaakt van literatuuronderzoek. Het literatuuronderzoek is de basis waarop dit rapport gebouwd is. Hoewel de gelezen informatie gecontroleerd is, is het mogelijk dat niet alles klopt met het projectgebied. Een aantal bronnen zijn namelijk gebruikt voor de algemene informatie, hierdoor kan het zijn dat niet alle informatie bruikbaar is voor de Geleenbeek. Daarnaast heeft het projectteam niet evenveel kennis van alle onderwerpen, hierdoor kunnen ook stukken terugkomen in het onderzoek die niet of niet volledig kloppen

Vervolg: meer informatie toegespitst op het projectgebied en specialisten inschakelen.

Waterwijzers natuur en landbouw

Voor de analyse van het gebied is gebruik gemaakt van de waterwijzers landbouw en natuur. Deze zijn erg nuttig geweest voor meer inzicht in het gebied. Maar vanwege de korte tijdsspan van het onderzoek is niet alles uit deze analyse gehaald.

Vervolg: meer tijd nemen voor de analyse met de waterwijzers.

Resultaten

De resultaten zijn aangedragen in de vorm van toe te passen maatregelen. Dit onderdeel van het onderzoek is goed verlopen door de onderbouwing van de gebiedsanalyse. Wel kwam naar voren dat de kennis op het gebied van ecologie minimaal was, hierdoor zijn de maatregelen niet uitgewerkt naar de omvang die het zou kunnen hebben.

Vervolg: meer kennis opdoen over ecologie of samenwerken met (hydro)ecologie specialisten.

Vervolgonderzoek

Dit onderzoek is gebaseerd op informatie uit geschreven rapporten. Voor een vervolgonderzoek is het van belang om meer onderzoek te doen binnen het gebied zelf voor accurate informatie. Aan de hand van accurate informatie kan dieper ingegaan worden op de chemische processen in het gebied en op de mogelijke maatregelen die uitgevoerd kunnen worden om de Geleenbeek terug te brengen naar zijn natuurlijke staat.
II. Reflectie op samenwerking

In deze bijlage kort ingegaan op de samenwerking binnen het projectteam. Daarnaast geeft elk projectteamlid kort haar eigen ervaring over het project toegelicht.

De samenwerking tussen de projectteamleden is goed verlopen. Tijdens het project is er goed gecommuniceerd tussen de leden. De taken zijn tijdens dit project evenredig verdeeld tussen de leden. Hetzelfde geldt voor de takenverdeling bij de overige projecten in deze periode. Hieronder wordt kort samenwerking en de ervaring over het project per projectteamlid toegelicht.

Carmen
De samenwerking tussen Brechtje en mijzelf is goed verlopen tijdens dit project en deze hele periode. Wij hebben elkaar goed aangevuld en de taken evenredig verdeeld. Het enige wat ik wat minder vond was de planning. Dit geldt voor de hele periode. Doordat twee van de drie projecten pas later begonnen was het aan het eind van de periode erg druk. Dit terwijl in het begin van de periode rustiger was. Een aantal lessen voor dit project hadden naar mijn mening al eerder kunnen plaatsvinden, zodat het project al eerder van start had kunnen gaan.

Brechtje
De samenwerking voor dit project ging erg goed. De taken zijn goed verdeeld en we hebben goed met elkaar afgesproken wie wat zou willen doen en wanneer we het af wilden hebben. Hierdoor liep het project soepel en wisten we wat we aan elkaar hadden. Waar we tijdens dit project tegen aan liepen was de planning. Doordat we geen tentamens hebben maar drie projecten liep de planning niet altijd even goed op schema. Ondanks dat niet alles soepel liep hebben we dankzij een goede samenwerking een volledig rapport aan kunnen leveren.